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This paper contains the -main results and techniques presented in
my lectures at Harvard and Princeton in May 1975. These lectures were
based on work by me and my collaborators I. Arefieva, L.A. Takhtajan,
V. E. Korepin and P.P. Kulish published in (1} - (7).and had either a long
title, '""Localized Solutions of the Classical Field Equations and their
Quantum Interpretétion” or a short one, ''Quantization of Solitons, " which
contain the same information. The problem treated in these lectures has
recently attracted the attention of several groups and the number of pap-
ers or preprints is increasing rapidly. The list (8) - (20) is a more or
less accurate description up to April 1975. I shall not make an extensive
comparison of the existing approaches with the one presented here but
confine myself to several comments in suitable places. Some errors in
(4) Iare corrected.

The technique will be illustrated on the example of the sine-Gordon
equation. It will be clear from the text which results have general val-
idity and which use the particular structure of this beautiful field theor-

tical model.

The starting point of the discussion is a Hamiltonian formulation
of the corresponding classical problem. The inverse scattering method
(see i.e. (21)) applied to the sine-Gordon equation (2), (3), allows one
to describe and parametrize all classical solutions with finite energy.
In particular, expressions for observables such as energy and momentum
in terms of angle action variables (2) display the particle spectrum of
the system (§ 1) and allow one to calculate the S-matrix for solitons (§ 3) in
a quasiclassical approximation. A systematic procedure for computing
the quantum corrections to the quasiclassical results will be developed in
§ 2. Some comments about the way to generalize the notion of a soliton
to higher dimensions and a conclusion will be presented in § 4.

During my stay in the USA I have benefitted from discussions with
C. Callan, S. Coleman, R. Dashen, S. Drell, D. Gross, B. Hasslacher,
R. Jackiw, A. Neveu and [ am happy to have an opportunity to thank them.

B. Hasslacher's help with the English translation cannot be overestimated.

1. THE DESCRIPTION OF THE CLASSICAL SYSTEM
Let x (x,t) be a chiral field in two dimensional space-time,
X (x,t) = exp{iufx,t)}
satisfying the boundary condition
T -

X {x,t)— 1,

so that
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is a charge associated with the current

L L -1
\ = = & .%u - = g0
fa Ay & u 9 » PR

which is conserved independently of the equations of motion.

The Lagrangian of the sine-Gordon equation has the form

R e

Here m is the mass of the field u, vy is a dimensionless coupling
constant. We use the usual convention h=1, ¢ =1.
The classical equations of motion and the Poisson brackets look

as follows

uH < Uy * Siaw = 0 ’

LToedy, w1y = Sy ¢

The inverse scattering method applied to these equations defines
a canonical transformation of the phase-space of the variables ufx),
m(x) onto a phase space parametrized by the scattering data for the
auxiliary linear problem which has the following structure:

l. Continuous spectrum, p(p), @lp), - ©< p< ®
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3. Double solitons (breathers)
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We have written explicitely all the non-trivial Poisson brackets.

The energy and momentum of the field is given by the expressions
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where

M " g_:. . M (d) = Q.M Cind = l%'_n Simol

and it is clear why we call the scattering data parametrization an "angle-

action' form of phase space. Indeed, energy and momentum are functions
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of the generalized momenta in this representation,

Quantization in the quasiclassical-tree approximation (to distin-
guish it from true quasiclassics which includes one loop) can be achieved
by changing Poisson brackets into corresponding commutators. The
operator p(p) is conjugate to’the "angle'' operator so that its eigenval-

ues assume the form

e
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the integer C and the numbers P, being arbitrary. The contribution
of the continuous spectrum to the energy is that of a scalar particle of
mass m--namely the fundamental particle of the theory. Its charge Q
is zero.

The variables P9 for solitons quantize trivially, The spec-
trum of pa is the whole real line and so its contribution to the energy
is that of a particle of mass M. Its charge, Q =+ 1 which is obvious

from the form of the classical solution in the case p=0, B=0, A =1

- T}
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The double soliton has two degrees of freedom: P. q correspond to

the center of mass motion and «, B to internal motion. The mass of a

double soliton

M- INM

depends on this motion and can assume any value from 0 to 2M. The

SE

classical solution for the case p=0, A=0, B=1
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where | is defined through
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makes it obvious that the charge Q for a double soliton is 0.

When quantizing one must pay attention to the peculiar character
of the phase space for the internal motion, namely that it is compact.
The full volume of this phase space is equal to lﬁrrz/y and this is to be
set equal to 2rN where N is the number of states in the quantized
version. The condition

ic 3 N- N- 2 3_1;‘
K ¥
is valid approximately for large N or small Y. The possible eigen-
values of a are to be quantized also and in the first approximation are

equal to

(at least for n large enough) so that we have a mass formula

&Cm nY
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M" ¥ \e



for the masses of the double soliton excitations in quantum mechanics.

The formal limit y = 0, n =1 gives the value

M

1 m

for the mass of the lowest excitation, coinciding with the mass of the

fundamental particles. R. Dashen, B. Hasslacher and A. Neveu (DHN

in what follows) have conjectured that this mass formula is exact after

a renormalization of y, coming from the one-loop correction. This ob-

servation makes one believe that the full quantum mechanical spectrum

is generated by soliton and double soliton degrees of freedom. The fol-

lowing experiment shows that this surprizing result can happen to be true.
Let us consider a non-relativistic example given by the nonlinear

Schroedinger equation
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which is a classical equation for a second quantized system of particles
with a pairwise interaction via a § —function potential. This equation is
completely integrable (22) in classical form and exactly soluble in quan-
tum mechanics (see i.e. (23)). There is only one type of soliton solution
and it has two degrees of freedom. The corresponding phase space co-
ordinates can be taken in the form
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A is an arbitrary integer.

There exists also a continuous spectrum, characterized by functions
p(p), @ (p), analogous to the case of the sine-Gordon equation. The con-

tribution to the observables such as the number of particles N, momen-

( see [22])
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tum P, and energy H assumes the form
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In quantum mechanics one uses an expression for H in normal ordered
form which can differ from H for a different choice of ordering of fac-

tors by the addition of some multiple of N

=H+¢N ,
norm

c depends on the choice of ordering in H.
After quantizing, the eigenvalues of 7n assume the form (in tree

approximation)

which is valid in general for k large enough. We shall see however that
this answer is exact after fixing the constant c. Indeed the contribution

of the solitons to the energy and momentum looks as follows
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We see that these contributions are those of particles of mass k/2

-
and a dispersion law for the corresponding energy
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The fundamental particle of mass 1/2 appears for k = | To have

r
a usual dispersion law e(p) = p for it one must choose ¢ = 1/48. With

this choice, the energy of the excitation with k > 1 becomes
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and can be interpreted as the energy of a bound state of k particles
with binding energy Ak. It is known that these energies exhaust the
full spectrum of Hnorm and so it is clear that one must not include the
continuous -part of the classical phase space to obtain the spectrum of
the quantum Hamiltonian. The reason for this phenomenon is still un-
clear, but at least it confirms the DHN conjecture that it is enough to
count only the soliton degrees of freedom to find the full quantum mech-
anical spectrum of the sine-Gordon equation.

We return now to the main subject with the comment that the clas-
sical sine-Gordon equation has an infinite number of local conservation

laws. We shall not give the explicit form of the corresponding densities,

since recurrence relations defining them can be found in (2). It will be
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enough to note that they are the deformations of analogous laws for the
free Klein-Gordon equation

l‘)LH - U, e }“t w= 0 )
which have the form
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The conservation laws P_ , P for the sine-Gordon equation differ

2n 2n+l

from these by the addition of local densities of order 3 and higher in u
and its derivatives. The mere existence of such conservation laws cau-
ses a severe restriction on the scattering. The variety of arguments be-
low belong to A. Polyakov.

Let us express the conservation laws in terms of in or out variables.

2n-1’ PZn vanish so that

uv.d) .

im

In the limit t—=+ oo the nonquadratic terms in P

P (o = P (7w

and the asymptotic expressions on the RHS are equal. This produces a

series of identities of the form

ikpu o). = Z(Pqu"m ;
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where the sum is taken over all types of initial and final particles. The
consequence is that the number of the particles in each process, as well
as their types and momenta are conserved. This means that the S-matrix
is proportional to the unit operator

S=TIexp{ -2i6}

where

I= m II ;o=
Y a & [pln pm:ltJI
with symmetrization for each type of particle. The net effect of the

scattering consists of a phase shift §, which depends on the momenta of

particles in the process.

2. PERTURBATION THEORY
Let us now consider the quantum corrections to the classical re-

sults described above. It is very convenient to use a functional integral
method to compute them. Conservation of the charge Q is also evident in
the functional integral formulation. Indeed, fields with different Q are
nonhomotopic, that is they cannot be deformed one into another in a con-
tinuous way. - This means that the action for any trajectory connecting
such fields is infinite and the transition amplitude vanishes.

We shall illustrate the perturbation theory by computing the correc-

tion to the soliton mass. We shall use a one-particle Green's function

+y
C (Ft.J‘i\Pi-{i\ g &\P“‘(M u\,lli Eb’u% - m(uﬁ‘})ixd-ﬂ] *r‘[u) \1 dudrw
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to do this. Here '\}{ {u,m) is the energy density and .Lp(u) is a wave
functional for a one soliton state with momentum p in a Schroedinger-

like representation. The Green's function must have the form

CGutarpety < F 3w Bl 71 (0
W1‘ %1‘{L

where Mq is the exact quantum mass of the soliton. The expression
for G above is useless as it stands, because we do not know the ex-
plicit form of the wave functional. This difficulty can be circumvented

however if we consider the limit of G{pz, t?_ [pl, tll for t —-o0, t_— oo,

1 2
so that T —- . An example from the quantum mechanics of a particle
with one degree of freedom shows that Gfpz.%]pl,tl) can be found in this
asymptotic region, if we begin with the Green's function G(xz, tzjxl. tl)
P

. ’ ; 1 2
in the coordinate representation and put XS t1+ 9 X,= - t2.+ q,-
For large |tlf and]tz [the expression we get in this way does not depend
on q; and q, and is proportional to Gfpz,t:Z |pl, £)-

The analogous recipe in the one soliton case looks as follows.

The Green function G(pz’tz[pr rl} for t;—-, t,— is given by the func-

tional integral
\ xp '[l L

where we integrate over all fields u(x,t) and w(x,t) such that
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where ulfx,t[ p‘,q) is a one soliton classical solution. In the limit
tlﬂ-cu. tz—- o this expression ceases to depend on 9, and q, and
muat assume the form (*).

It is easy to understand why this limit is proportional to a & -
function. Indeed, if 12 7 P, -there existsno classical trajectory with
the prescribed values for t = t] and t = tz. so that the functional in-
tegral vanishes (at least in the stationary phase approximation). For
P;= P,= P there exists an infinite number of admissible trajectories,
any one soliton solution ul(x. t|p,q) can be used as such. The corres-
ponding action does not depend on q and the functional integral be-
comes proportionil to

% dﬂ‘r * 31- Tﬂ(ﬂ]
"o
which concludes the argument.

It is clear that one must modify this method of computing the func-
tional integ.ra.l and try to obtain directly the coefficient F in front of the
6 -function in (¥). The degeneracy mentioned above can be remedied if
we can integrate over fields with fixed total momentum p to obtain the

transition amplitudes in the invariant subspace defined by

Plovy = §mndenp

The general recipe for performing functional integrals on systems with
constraints (25) shows that F is given by the expression

\u\,it;iibu* Memfandth 1S (Pem-p Y(Xen) {P XY [T duds
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where
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in the limit tz—- o, tl—--m. when it does not depend on q, and q,

so that to compute, one can put 9= 4q,= 0. Here X(u,m) is an arbi-

trary subsidary condition such that
i Py, Y(u,ﬂg # O

The integral does not depend on the choice of X, and is covariant, so

- P
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We shall proceed to compute F for v = 0 which simplifies the pro-
cedure.
The subsidary condition

y( . _‘3‘ x M (o) di )

o
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where f{t) — 0, |1f] — o is convenient because { P, X} =1 for such an X

and we shall use it below. We make use of the stationary method, begin-

ning with the change of variables

L
Wix k) = Wix + H 2(xt) T - I_- W(xh
X

where

ufx) = uI{x, t'O, 0)
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is independent of t. The functions z(x,t), w(x,t) will play the role of
the deviation from a given classical field ul {x), which is the only ad-
missible stationary trajectory. Confining ourselves to the first two or-
ders in y we have

F(T)= F (T) - FOIT)

-1

where
_ , 3
PoCTy s o LMY e {0 50T

and
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where we use the notation
T = wt (4- csu)

to make it clear that our considerations are general and K is a

Schroedinger operator

K\:_ "{_1 + Q’“(u)

dx*
The argument of the second & -function can be transformed in the fol-

lowing way

o ok
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on the

and the second term / RHS vanishes because of the classical equation

of motion for u . We see that the second § -function now looks

analogous to the first one. It is a general fact that u is an eigen-

function of K with zero eigenvalue (see i.e. (10)) which is also the

only one. The Gaussian integral for

form

now

FO can/be written now in the

2

F_{t) = exp -—lTr'In ‘g—-+K
0 2 dtz

where the trace is taken in x t space, - < x< o, t< t< t, and Tr'

1 2

indicates that the singular contribution of the zero eigenvalue of K

must be dropped.

The formal evaluation of FU can be done in the following way.

Consider

Lo~ Te (£ ek)

Differentiating
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where ''tr'' is a trace over x-—space.

depend on t we obtain

After observing that K does not
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and after integrating back, find
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where KO:——-—Z' and we have fixed the integration constant so as to sub-
dx

tract the vacuum energy.

To compute the trace one can use the trace formula (see i.e. (26))
Lo (W00)- W(Kk)) - \\I(mhd% E_\Y (2)

valid for an arbitrary function W(\). Here S(\) is the S-matrix of K

and the sum is over discrete eigenvalues. -In our example

L
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and K has the only one discrete eigenvalue X\ = 0. The S-matrix is

given by
S'}. 0 S . m*ﬁm
S ’ ( 0 Sa ) > m;‘;m

(no reflection). Using all these formulas we obtain
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so that

Pemye R eow sl B

The infinite term is absorbed in the renormalization of the mass m

n?

(see (8), (9), (27)). Indeed, the one loop contribution in the mass re-
normalization of the fundamental particle in ordinary perturbation

theory is given by

sm = -y Do)

16w
so that

8m m D (0) bm,

Y 211'2 Y
We see that
8mr mr

M = -— + 0 .

a vy % Y)

The sum of the first two terms vanishes when vy = 8w. This value of y
is known to be a critical one for the sine-Gordon equation, see (13).

One can speculate that it is an indication that the formula

for the quotient of the soliton mass and the mass of the fundamental
particle is exact. This conjecture, made by DHN (l1) is not completely

unexpected. Indeed the classical sine-Gordon equation is a completely
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integrable Hamiltonian system. Quasiclassical results {tree + one
loop) for a discrete spectrum are often exact for such systems. To
verify the conjecture, one must procede to the next order in y- This
any

is difficult, though possible and/available simplification of the formal-
ism must be used. For instance, 't Hooft's trick, namely, inserting
the constraint and the subsidiary condition into the exponential of the
functional integral may be quite useful.

The main result of this section is the statement that quantum
corrections for small y are given by a series in positive powers of
Y. The main nonanalytic part Ofy-l'} is supplied by classical field

theory.

3. THE S-MATRIX
The existence of an exact classical description of a many soliton
motion enables us to calculate the classical (tree) approximation to the
S-matrix for solitons. We shall illustrate this with the example of two
soliton scattering. Let us consider first, the case of solitons of opposite

charge (ss scattering). The classical equation of motion has a solution
U(K;{l?ia%i.‘)l,%t,".') =

d, -4
g Su-ds
= b( QLLH M *‘———___L;*l
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The in and out variables, p, q , p , q+ are connected by the relations
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which can be considered as a canonical transformation. The corres-

ponding generator K(plpz} is defined by the formula

3 1 '
5 % .
Cipra- Ko £ A0 S fal b

%¢ +4
S-3N2+ is[s~‘1ﬁt]

IM?
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The branch appearing in the definition of € is to be taken in such a

way that s — £ maps the physical sheet of the s-plane with the cuts

2
-0 < s<0; 4M < s< w onto the upper half plane. The integration
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constant in the definition of K is chosen to make K(l) = 0.
The quantum unitary operator, corresponding to this canonical

transformation is a classical-tree approximation to the S-matrix

PN Vg g pd= S(paply Yoy S o
%SK ()« wp & K i)

where < is to be determined.
The case of two solitons of equal charge (ss or #s) can be

handled in the same way. The corresponding two soliton solution

w(nt) PerYe, Pr, g, +, +) =

d-d
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)+ ae t'*"-
sk (4% - Ldt Rt

also decays into the sum of two one-soliton solutions when [t] —= oo.

’Ltmd-\

There is however a difference: maxima in the asymptotics for t —-co
approach one another as time increases, stop at some distance
from one another, depending on their initial velocities, and then go
backwards. This behavior corresponds to repulsion at small distances.
The net result of this classical scattering is the same as in the first

example but with the out coordinates interchanged. The S-matrix takes

the form

< Pi.pil S 1P, ped = %(Pn‘Pil‘(Pf-Pn) S;; ()
ol wh |- RO e
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The constant <, is not necessarily equal to <

We now discuss the crossing properties of the S-matrix. The
expression for S(s) that we found has a spurious cut in the gap
0<s< 4M2 due to an accumulation of poles, corresponding to the
bound states in as scattering. In {aclt, their number N = STF becomes
infinite in our approximation. This obstacle prevents us from directly
comparing the analytic continuation of the forward ss scattering ampli-
tude with the backward ss scattering amplitude. S. Coleman (28) has
proposed the following indirect way to do the comparison. Hermitian
unitarity requires that S(s) below the cut is the complex conjugate of
S(s) on the physical side of the cut. The crossing condition can be writ-

ten as follows

S _(4M%-8+i0) = 5* (s+i0)
88 88

where the LHS is to be defined by the analytic continuation of S’i(s} via

the upper half plane. One can check that this formula is correct if

. 15
R. Jackiw and C. Woo ~ and V. E. Korepinag, have calculated the phase
shift, by computing the classical action of the two-soliton solution. They

find that

thus confirming that crossing is indeed true.

Let us once again examine the S-matrix written in the form
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where we have substituted for the coupling constant vy, its expression

¥

in terms of the number of bound states, N. This formula suggests
that the higher order corrections to the S-matrix '"quantitizes" the
exponential in the following way
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The S-matrix will then have the form
S ﬂ \3 t ?.
kS\ ; %o ©10n »

so that the spurious cut now disappears and instead S(s) has poles in
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thus confirming the conjectured formula for bound state masses. A
perturbation procedure analogous to that of § 2 can be used to prove
this conjecture. One must introduce two constraints in the functional
integral before doing a stationary phase approximation, to take into ac-

count the independent conservation of energy and momentum.
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This section ends with several comments. First, we shall pre-
sent one more argument in support of the mass formula for the bound
states. One can compute the action of the classical double soliton sol-
ution which gives a classical-tree approximation for the exponential of

the Green function for the double soliton. The result is

Q{(?AW\-_ M\,{J‘iHSm{ 1—&*”—?2) M(JCL,JH\P-*)

{IM Gud T

wh =z d i i iodic i - t B
ere ? (__t and U is quasiperiodic in the c-m system (p = 0)
N
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m Cogol K

If we do not want to modify the coefficient in front of T in the above

exponential we must set

'Biwd_ ath dh-Kh, h“x_!'
X ! \¢ ¥

which gives the mass formula written above. The next comment con-
cerns scattering. One can find the classical-tree approximation for

the S-matrix of several solitons, double-so.!.i_.,ton-double-soliton scat-
tering, or for double soliton-soliton scattering etc. in a way analogous
to that used for soliton-soliton scattering. We present several formulae
found by V. E. Korepin (29) without derivation. The double soliton-

double soliton $-matrix is given by
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and K(£) was defined above. Double soliton-soliton scattering is

given by

Suls = e | HBL Y e

IMM,

The fundamental particle-soliton S-matrix is given by

F* S-‘ml‘HLL
Sla- :ﬁi: ¥1k*—a§- )

which completes the list of S-matrices calculated so far.

4. CONCLUSIONS AND SPECULATIONS
We can extract from the preceding arguments the following at-

tractive features of field theoretic models with soliton sectors.
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l. One can calculate perturbatively. The physical quantities--
i.e. masses, phase-shifts--are nonanalytic in the coupling constant,
but all singular terms are given by classical computations. Quantum
corrections are analytic in the coupling constant.

2. Soliton-like excitations interact strongly when the fundamental
field interacts weakly. Indeed, the masses and phase shifts computed
above have the coupling constant appearing in the denominator.

3. Soliton-like excitations have a nontrivial charge, Q of topolog-
ical origin.

It is very important to demonstrate that the same general features
can be realized in a 3-dimensional model. The existence of solitons--
namely finite evergy, static or periodic in time, localized solutions of
classical field equations--would be a first indication that the quantum
field under consideration has nontrivial particle-like excitations. Several
examples of the existence of such solutions are known (31), (32), (33),
(8), (9), (20) and their number is increasing. We shall now discuss the
properties of field theoretic models that lead to the existence of topolog -
ical charge.

One can generalize the one-dimensional case in two ways. The
first will be a natural generalization of the g04 model and the second
will be that for the sine-Gordon system.

The one-dimensional current

ol
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generating the charge Q has the same form in both cases, but ad-
mits different interpretations and higher dimensional generalizations.

In the @4 model with the self interaction

\gu* - ul(ﬂ s & )1

the field ¢ can have the asymptotic values + A when [x|—- co. The
interpretation is that ¢ defines a map of the boundary of the space,

consisting of just two points X = + o into the two-point set (a, -a).

oo (Z) - (&)

The charge Q is trivial if ¢ (@) = ‘¢ (-o) , i.e. if the map is into
one point, and nontrivial if ¢ (@) # ¢ (-©) , i.e. if the map is onto
both of them. This is easily generalized to higher dimensions. Consider
the Higgs field Lpa, a=1...,n where n is the dimension of space,

with the self interaction

\ﬂ‘w% % U\- B = !\L]

Different vacua are parameterized by points on the n-1-dimensional

sphere Sn-l. The field l.l.ra. defines the map of the boundary Sn_l of

1

the space R” into the manifold of vacua

The corresponding charge Q is a homotopy class of such a map. and
can take arbitrary integer values in contrast with the case n = 1. All
the necessary elementary topological notions can be found in (24). The

charge Q can be calculated by integrating the current
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. E E.Eh

L ¢ - [
A - R AR R AR

1

written here for n = 3. It is easy to see that J is a divergence so

0
that the charge is nontrivial only if the Higgs fields have nontrivial

asymptotics. The examples

a

b=t e’  Peim X
of a complex field for n = 2 and an isovector real field for n = 3 were
used in (31) and (9), (33), respectively.

The sine-Gordon charge has a different interpretation. The field
X (x} can be considered as a map from the space Rl into a nonlinear
internal space--the circle S!
p g Rl = Sl
with the prescribed vacuum value
X (-o) =% (00) =1
Such a map is characterized by integers called winding number s which is
our charge (. The generalization to higher dimensions requires the use
of the nonlinear chiral field x ,» for example
x:R'— s", fix'__m-*x o
The corresponding topological charge is a homotopy class of this map and

can be computed by integrating the current

—j { (

ave 4 [T _

= E &

(see i.e. (30)) where we use the usual parametrization of y -field in the

form

2
¥ = (ﬂa.cr}, B O .
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Notice that in contrast with a Higgs type model this JO is not a diver-
gence and the charge density for this type of charge can be localized
arbitrarily. It is this feature that makes the second type of topological
charge a more attractive one;:. The use of this type of charge was ad-
vocated by T.H.R. Skyrme and D. Finkelstein who seem to have been
the first to discuss the possible role of topology in field theory. I
must admit however that the cost of using chiral fields is the nonre-
normalizability of the corresponding field theoretic models in the usual
sense of the term.

The example X : R3 e 53 is neither typical nor minimal for a
chiral field with topological charge in three dimensions. The minimal
one is

n: Ra—' Sz
that is, n is a scalar isovector field n = {nl, nz, na), satisfying a con-
straint
nl2 + ng + n: =1 .
The' topological charge for this field is called a Hopf invariant in math -
ematics and it can not be written in terms of a simple local current.
Nevertheless it has a kind of locality.
I have used the n-field in a particular model of electromagnetic and

weak interactions of leptons 3:4 where it played the role of a neutral direc-

tion in the three-dimensional internal space of electric charge. It was
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shown in (32) that this model admits localized static solutions in the
case of a two-dimensional space. The field n, realizes the map

n: Rz- Sz
and has a nontrivial charge Q associated with the current analogous
to that written above for n = 3. This solution can be interpreted as an
infinite vortex in the three-dimensional case. One can apeculate that
the corresponding closed vorticies could be candidates for localized
solutions in the case n = 3. Usually such vorticies are unstable as
they have a tendency to shrink in order to decrease their energy. To
make them stable one can introduce angular momentum, attach fermion
fields to the string etc. The last speculation in this paper is to show that
these modifications might not be necessary for a vortex made out of the
n-field. The Hopf invariant of a closed vortex will be nontrivial if we
twist the vortex around the core by a full 2w rotation before closing it.
Such a twisted vortex can be stable and static because resistance against
the twist for a small radius can overwhelm the tendency the vortex has
to shrink. So far, I have not been able to find a suitable Ansatz or pro-
vide a variational estimate, to prove that this is indeed the case. Work

in this direction is in progress.
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